

Modbus/Sever API Guide

V1.0 EN

First edition date: 2022.07.20

Last edition date: 2022.11.11

Document Version

Version	Date	Content	Author
V1.0	2022/07/20	V1	Gerry
V1.0 EN	2022/11/11		Juni

1. Dispatch Function

1.1 Method of dispatch

The system support three modes of dispatch: Server, MODBUS, and CAN. The Server and MODBUS communication are more frequently used as CAN.

1.2 Dispatch mode

		In this mode, the battery is not allowed to discharge (Pdispatch
1	Battery only	<32000). After the PV supplies the load, the excess energy is
1	charges from PV	used to charge the battery. When the battery is charged, there is
		surplus power to the grid.
2	State of Charge	Force charge mode. The charge or discharge process will be
2	control	stopped until it reaches the SOC setting value.
3	Load Following	The system will be self-consumption mode.
4	Marinia Outaut	If the current PV power can not meet the required inverter AC
4	Maximise Output	output power, the battery will also discharge.
5	Normal Mode	The system will be self-consumption mode.
	Ontimica	Currently PV will charge batteries firstly. If the PV power
6	Optimise	cannot meet the maximum battery charging power, it will also
	Consumption	absorb electricity from the grid to charge the battery.
7	Maximise	It will only absorb electricity from the grid to charge the
/	Consumption	battery.
	No Battery Charge	The system will be self consumption mode the charging power
19	(only for specifical	The system will be sen-consumption mode, the entrying power
	EMS version)	aoes not exceed the set power.

Table 1: Dispatch mode

2. Dispatch Command

2.1 Server Command:

The dispatch command in AlphaCloud API is written in Table 2. These 8 parameters are only control parameter. STATUS should be set 1 by turning on dispatch mode, 0 by turning off dispatch mode; The run time of dispatch can be given as wished.

Mode	Para 1	Para 2	Para 3	Para	Para 5	Para 6	Para 7	Para 8
				4				
1	Р		0	1				
2	Р		SOC to stop	2				
3	Р		0	3				PV: 1:
4	0	0	0	4	0	0	0	turn on,
5	Р		0	5				2: turn
6	0		0	6				off.
7	0		0	7				
19	0		0	19				

Table 2: Parameter list for dispatch on server

Para1 = Offset $(32000) \pm$ target power value (+: to grid; -: from grid), Para3 sets the SOC value. If the system arrives this setpoint, the dispatch will stop. Para3=SOC / 0.4. Attention, if the battery is wished to discharge, the SOC value should be smaller than current SOC, similarly by battery charge.

Para8 sets the On/Off states of PV generator. If the system does not support PV control, The value can be set to 0.

Para2, Para5, Para6, Para7 can be set to 0,

2.2 MODBUS Command:

Alpha Modbus Register Protocol.docx parameter list.do

2.2.1 Connection

One side 4 - B, 5 - A connection to port 485, the other side 568B connection to EMS board CAN/485.

Figure 1: Connection

2.2.2 MODBUS Configuration

Please refer to <u>Alpha Modbus Protocol.docx</u> for MODBUS protocol, Baud rate is 9600, the default address is 0x55, the function code for reading is 0x03, and the function code for writing is 0x10, the last two bits checksum is CRC16 for MODBUS. High digits are right at the end, and there is a serial port automatically generated.

Under the normal communication condition, you could send the following command code after all connection for testing: 55 03 01 00 00 02 C8 23 (55 is the default MODBUS address; 03 stands for reading; 01 00 stands for register 0100; 00 02 means starting from 0100 register and reading two registers more, which are 0100 (battery voltage value) and 0101 (battery current value) registers, ; C8 23 are automatically generated checksum for CRC).

Figure 2:	Register	0100H a	ind 01011	Н

			2byte⇔		0.01↔
<₽	4	€ ¹	Ę	Ţ	⊂)
	Hous	ehold Batt	ery₽		
0100H↩	Battery voltage⇔	RO↩	Occupy	unsigned	0.1\//bit/-]
			2 byte↩	short↩	0.107010
0101H↩	Battery current 🚽	RO↩	Occupy	short₽	0.14 (bit)
			2 byte↩		0.1A/bit

After sending the command, the system will receive digits for example 55 03 04 02 13

not released

00 0B 5E 4C (55 is MODBUS default address; 03 stands for reading; 04 stands for 2 times of the number of the register read, 02 13 is the battery voltage value in 0100 register, its decimal form is 531, which is transformed as 53.1V; 00 0B is the battery current value which is stored in 0101 register, the decimal form is 11, which is transformed as 1.1A; 5E 4C are automatically generated CRC checksum).

· ·	Uart Assistant	- □ ×
COM Configs	Data log	VartAssist V4.3.13
Channel CONTOR ACTION Baudrate 9600 Paritybit NONE Databits 8 Stopbits 1	[2022-07-01 14:08:14.827]# SEND HEX> 55 03 01 00 00 2C 8 23 [2022-07-01 14:08:14.913]# RECV HEX> 55 03 04 02 13 00 0B 5E 4C	^
Close Recv Options ASCII HEX Log mode display Auto linefeed Receive to file Pause receiving More Clear	Algorithms × CRC16 for MODBUS BigEndian OK Cancel	
Send Options C ASCII HEX Use escape chars AT CMD auto CR+L AT CMD auto CR+L Append checkbits Send from file Period 100 ms <u>Shorteut History</u>	Data Send 1. DCD ◆ 2. RXD ◆ 3. TXD ◆ 4. DTR ◆ 5. GND ◆ 55 03 01 00 00 02	6. F Clear Clear Send
🕼 Readv!	39/2 RX:364	TX:16 Reset

By checking the reading function of MODBUS, the communication functionality is also proved to work normally, it is the time to begin dispatch. There are 6 parameters, 9 registers. All registers should receive correct command to execute dispatch. The MODBUS dispatch follows the same logic as dispatch in Server.

Mod	Para 1	Para 2	Para 3	Para	Para 5	Para	Para 7	Para 8
e				4		6		
1		Р		1	0			
2	STATUS	Р		2	SOC to stop			
3	1: dispatch	Р		3	0			PV: 1:
4	active,	0	Q (set to	4	0	Tim	0	turn on, 2:
5	0: dispatch	Р	0)	5	0	e (s)	Ŭ	turn off
6	deactivate	0		6	0			
7	active power	0		7	0			
19		0		19	0			

Table 3: Parameter list for dispatch with MODBUS

Para2 is the active power,

Para2= Offset $(32000) \pm$ target power value (+: to grid; -: from grid), Para3 is the reactive power, which can be set 0.

Para5 sets the SOC value. If the system arrives this setpoint, the dispatch will stop. Para5 = SOC / 0.4. Attention, if the battery is wished to discharge, the SOC value should be smaller than current SOC, similarly by battery charge.

Para6 is the dispatch time.

Figure 4: Register list for dispatch by MODBUS

Smarten Your Energy

		Dispatche			
0880H	Dispatch Start	R/W↩	Occupy	unsigned	1·start: 0: stone
			2 byte↩	short↩	instance, of scops
0881H↩	Dispatch Active power	R/W⊲	Occupy	Int↩	<u>1</u> ₩/bit↩
0882H 🚽			4byte		Offset:32000
					charge:<32000↩
					discharge:>32000↩
0883H↩	Dispatch Reactive power⇔	R/W↩	Occupy	Int↩	1var/bit∉
0884H ↩			4byte		Offset:32000
					charge:<32000↩
					discharge:>32000
0885He	Dispatch Mode↩	R/W↩	Occupy	unsigned	Noto7/1
			2 byte↩	short↩	Noter
0886H↩	Dispatch SOC∉	R/W↩	Occupy	unsigned	0.4%/bit «
			2 byte↩	short↩	example: Send
					SOC=95,correspon
					ding to the SOC of
					38%.↩
0887H↩	Dispatch Time⇔	R/W↩	Occupy	unsigned	1s/hit <i>⇔</i>
0888H↩			4 byte↩	int↩	

2.2.3 MODBUS Dispatch Example

Example ([HEX]): 55 10 08 80 00 09 12 00 01 00 00 75 30 00 00 00 00 00 02 00 FA 00 00 01 F4 A9 D155

55: MODBUS default address; 10: writing ; 08 80: start from register 0880; 00 09: counter nine register from 0880 register; 12(18 in DEC): number of register read x 2; 00 01: para1, dispatch active; 00 00 75 30(30000 in DEC): para 2, battery charge with 2kW; 00 00 00 00: para 3; 00 02, para 4: dispatch mode 2; 00 FA(250 in DEC): para 5: SOC to stop is 100%; 00 00 01 F4(500 in DEC): para 6, dispatch time is 500s; A9 D1 is the CRC checksum)

Figure 5: Example of dispatch command

```
[2022-07-22 15:52:58.889]# SEND HEX>

55 10 08 80 00 09 12 00 01 00 00 75 30 00 00 00 00 00 02 00 FA 00 00 01

F4 A9 D1

[2022-07-22 15:52:58.974]# RECV HEX>

55 10 08 80 00 09 0E 53
```

The battery should then enter in dispatch mode 2 and charging with 2kW, until the battery is full charged.

not released